Spatial disaggregation of rainfall data

نویسندگان

  • R. MEHROTRA
  • R. D. SINGH
  • R. D. Singh
چکیده

Use of output from global Circulation Models (GCMs) by regional or small scale rainfall-runoff models necessitates the disaggregation of the hydrological information available from GCMs to smaller scales. The hydrological processes of interest commonly occur at much smaller scales than those being modelled by GCMs. The present work examines the disaggregation of areally averaged monthly rainfall values of a basin or a region into point rainfall values. It uses some statistical methods based on a frequency analysis approach, a correlation approach and a disaggregation approach. A total of ten different methods have been tried and their relative performances compared based on some error criteria evaluated from observed and disaggregated point rainfall and mean areal rainfall values and their statistics. The results show the superiority of methods based on disaggregation techniques over other methods. The methods presented and discussed in the paper may very well be applied to disaggregate mean areal rainfall values into point rainfall values and also for infilling missing rainfall records. Désagrégation spatiale de données de précipitations Résumé L'utilisation à l'échelle locale ou régionale, dans des modèles pluies débits, des résultats de modèles de circulation générale, nécessite la désagrégation de l'information hydrologique de ces modèles à une échelle plus fine. Les phénomènes hydrologiques les plus intéressants se déroulent en effet à une échelle beaucoup plus petite que celle des phénomènes modélisés par les modèles de circulation générale. Ce papier s'intéresse à la désagrégation de valeurs mensuelles de précipitations moyennées sur un bassin ou une région en précipitations ponctuelles. Il utilise certaines méthodes statistiques fondées sur l'analyse fréquentielle, l'analyse des corrélations et la désagrégation. Un total de dix méthodes différentes ont été expérimentées et leurs performances respectives ont été comparées sur la base de critères d'erreur calculés à partir des données observées et des données obtenues par désagrégation ainsi que de leurs statistiques. Les résultats montrent la supériorité des méthodes fondées sur la désagrégation. Les méthodes présentées et discutées ici peuvent parfaitement être appliquées pour désagréger des valeurs surfaciques moyennes en valeurs ponctuelles comme pour reconstituer des valeurs manquantes dans des enregistrements pluviométriques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatial disaggregation of bias-corrected GCM precipitation for improved hydrologic simulation: Ping River Basin, Thailand

Global Climate Models (GCMs) precipitation scenarios are often characterized by biases and coarse resolution that limit their direct application for basin level hydrological modeling. Bias-correction and spatial disaggregation methods are employed to improve the quality of ECHAM4/OPYC SRES A2 and B2 precipitation for the Ping River Basin in Thailand. Bias-correction method, based on gamma-gamma...

متن کامل

گسسته‌سازی زمانی بارش‌ بر اساس مدل آبشاری میکروکانونیک (توسعه بسته نرم‌افزاری و مطالعه موردی)

      Rain gauge stations that measure fine scale rainfall are mainly limited in number or in the length of the recorded data. Therefore, temporal disaggregation models have been considered because of their ability in generating fine scale data from coarse scale measurements of rainfall. In this study, microcanonical cascade model, which is based on the scaling properties of rainfall and consta...

متن کامل

Spatial Disaggregation of Areal Rainfall Using Two Different Artificial Neural Networks Models

The objective of this study is to develop artificial neural network (ANN) models, including multilayer perceptron (MLP) and Kohonen self-organizing feature map (KSOFM), for spatial disaggregation of areal rainfall in the Wi-stream catchment, an International Hydrological Program (IHP) representative catchment, in South Korea. A three-layer MLP model, using three training algorithms, was used to...

متن کامل

A latent Gaussian Markov random field model for spatio- temporal rainfall disaggregation

Rainfall data are often collected at coarser spatial scales than required for input into hydrology and agricultural models. We therefore describe a spatio-temporal model which allows multiple imputation of rainfall at fine spatial resolutions, with a realistic dependence structure in both space and time and with the total rainfall at the coarse scale consistent with that observed. The method in...

متن کامل

GCM precipitation for improved hydrologic simulation

Papers published in Hydrology and Earth System Sciences Discussions are under open-access review for the journal Hydrology and Earth System Sciences Abstract Global Climate Models (GCMs) precipitation scenarios are often characterized by biases and coarse resolution that limit their direct application for basin level hydrological modeling. Bias-correction and spatial disaggregation methods are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998